Introduction to Big Data
with Apache Spark

J\Z @databricks’
rK

I d b BerkeleyX

Spa

This Lecture

Programming Spark

Resilient Distributed Datasets (RDDs)
Creating an RDD
Spark Transformations and Actions

Spark Programming Model

Python Spark (pySpark)

* We are using the Python programming interface to
Spark (pySpark)

* pySpark provides an easy-to-use programming

abstraction and parallel runtime:
» “Here's an operation, run it on all of the data”

* RDDs are the key concept

Spark Driver and Workers

Your application
(driver program)

A Spark program is two programs:
» A driver program and a workers program
SparkContext

Worker programs run on cluster nodes

Cluster Local or in local threads
manager threads

e S
e S
- ~

Worker Worker

Spark Spark
executor executor

RDDs are distributed
across workers

Amazon S3, HDFS, or other storage

Spark Context

* A Spark program first creates a SparkContext object
» Tells Spark how and where to access a cluster
» pySpark shell and Databricks Cloud automatically create the sc variable

» IPython and programs must use a constructor to create a new SparkContext

* Use SparkContext to create RDDs

In the labs, we create the SparkContext for you

Spark Essentials; Master

* The master parameter for a SparkContext
determines which type and size of cluster to use

local run Spark locally with one worker thread
(no parallelism)

local[K] run Spark locally with K worker threads
(ideally set to number of cores)

spark://HOST :PORT connect to a Spark standalone cluster;
PORT depends on config (/077 by default)

mesos://HOST:PORT connect to a Mesos cluster;

PORT depends on config (5050 by default)

In the labs, we set the master parameter for you

Resilient Distributed Datasets

The primary abstraction in Spark
» Immutable once constructed
» Track lineage information to efficiently recompute lost data
» Enable operations on collection of elements in parallel

You construct RDDs
» by parallelizing existing Python collections (lists)
» by transforming an existing RDDs
» from files in HDFS or any other storage system

RDDs

* Programmer specifies number of partitions for an RDD

(Default value used if unspecified)
RDD split into 5 partitions

- | T T r ! Imore partitions = more parallelism I
| ftem-l - item-6 : item-1l : item-16 : item-2] |
I item-2 I item-7 1 item-12 | item-17 | item-22 |
I item-3 - item-8 - item-13 - item-18 : item-23 |
tem-4 | item-9 | item-14 | item-19 | item-24 1
: item-5 © item-10 . item-15 item-20 : item-25 |
: | | | | I
e e e D e)

Worker

Spark
executor

Worker Worker

Spark Spark
executor executor

Transformed RD

Persist (cache) R

RDDs

'wo types of operations: transformations and actions

‘ransformations are lazy (not computed immediately)

D Is executed when action runs on It

DDs in memory or disk

Working with RDDs

e (Create an RDD from a data source: 8 <|ist>

* Apply transformations to an RDD: map filter

* Apply actions to an RDD: collect count

<|ist> —{ RDD | filtered RDD > mapped RDD
parallelize filter map T

collect action causes parallelize, filter,
and map transforms to be executed

Result

Spark References

e http://spark.apache.org/docs/latest/prosramming-suide.html

e http://spark.apache.org/docs/latest/api/python/index.html

Creating an RDD

* Create RDDs from Python collections (lists)

>>> data = [1, 2, 3, 4, 5]
>>> data

[1, 2, 3, 4, 5]

No computation occurs with sc.parallelize()
* Spark only records how to create the RDD with
four partitions

>>> rDD = sc.parallelize(data, 4)

>>> rDD

ParallelCollectionRDD[@] at parallelize at PythonRDD.scala:229

Creating RDDs

e From HDEFS, text files, Hypertable, Amazon S3, Apache Hbase,
Sequencefiles, any other Hadoop InputFormat, and directory or
glob wildcard: /data/201404*

>>> distFile = sc.textFile("README.md", 4)
>>> distFile
MappedRDD[2] at textFile at

NativeMethodAccessorImpl.java:-2

Creating an RDD from a File

distFile = sc.textFile("...", 4)

LD

KRR

* RDD distributed in 4 partitions
* Elements are lines of input
* Lazy evaluation means

no execution happens now

Spark Transformations

* C(Create new datasets from an existing one

* Use lazy evaluation: results not computed right away —
instead Spark remembers set of transformations applied

to base dataset
» Spark optimizes the required calculations
» Spark recovers from failures and slow workers

* Think of this as a recipe for creating result

Some Transformations

map (func) return a new distributed dataset formed by passing
each element of the source through a function func

filter(func) return a new dataset formed by selecting those
elements of the source on which func returns true

distinct([numTasks])) return a new dataset that contains the distinct
elements of the source dataset

flatMap(func) similar to map, but each input item can be mapped
to 0 or more output items (so func should return a
Seq rather than a single item)

Review: Python lambda Functions

* Small anonymous functions (not bound to a name)
lambda a, b: a + b

» returns the sum of its two arguments

* (an use lambda functions wherever function objects are
required

* Restricted to a single expression

>>>
>>>

RDD:

>>>

RDD:

>>>
>>>

RDD:

Transformations

rdd = sc.parallelize([1, 2, 3, 4])
rdd.map(lambda x: x * 2)
[1J 2J 3) 4] - [ZJ 4) 6J 8]

Function literals (green)
are closures automatically
passed to workers

rdd.filter(lambda x: x % 2 == 0)
[1, 2, 3, 4] » [2, 4]

rdd2 = sc.parallelize([1, 4, 2, 2, 3])

rdd2.distinct()
[1, 4, 2, 2, 3] » [1, 4, 2, 3]

Transformations

>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.Map(lambda x: [x, x+5])
RDD: [1, 2, 3] » [[1, 6], [2, 7], [3, 8]]

>>> rdd.flatMap(lambda x: [x, x+5])
RDD: [1, 2, 3] » [1, 6, 2, 7, 3, 8]

Function literals (green)
are closures automatically
passed to workers

Transforming an RDD

lines = sc.textFile("...", 4)

comments = lines.filter(isComment)
_— lines comments .
— |Ess) 953 Lazy evaluation means
-— 82 52 nothing executes —
— Spark saves recipe for
_ e =5 transforming source
SCCIE X

Spark Actions

* (ause Spark to execute recipe to transform source

* Mechanism for getting results out of Spark

Some Actions

reduce(func) aggregate dataset's elements using function func.
func takes two arguments and returns one, and is
commutative and associative so that it can be
computed correctly in parallel

take(n) return an array with the first n elements

collect() return all the elements as an array
WARNING: make sure will fit in driver program

takeOrdered(n, key=func) return n elements ordered in ascending order or
as specified by the optional key function

Getting Data Out of RDDs

>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.reduce(lambda a, b: a * b)
Value: 6

>>> rdd.take(2)
Value: [1,2] # as list

>>> rdd.collect()
Value: [1,2,3] # as list

Getting Data Out of RDDs

>>> rdd = sc.parallelize([5,3,1,2])
>>> rdd.takeOrdered(3, lambda s: -1 * s)
Value: [5,3,2] # as 1list

Spark Programming Model

lines = sc.textFile("...", 4)

™~

print lines.count()

— lines count () causes Spark to:
u e # 9 * read data

—— 33 # * sum within partitions
— 35 4 e combine sums in driver
<

_—_lines comments Spark recomputes lines:

Spark Programming Model

lines = sc.textFile("...", 4)
comments = lines.filter(isComment)
print lines.count(), comments.count()

/

S 9 * read data (again)
* sum within partitions

e combine sums In
driver

g % @

=+

|
111

lines

comments

_—_lines

|
111

Caching RDDs

sc.textFile("...", 4)
Lines.cache() # save, don't recompute!
= lines.filter(isComment)
print lines.count(),comments.count()

#9 comments
i —> 58

RAM

RAM #/ F
RAM |# e #
RAM [

D

Spark Program Lifecycle

Create RDDs from external data or parallelize a
collection In your driver program

Lazily transform them into new RDDs

cache() some RDDs for reuse

Perform actions to execute parallel
computation and produce results

Spark Key-Value RDDs

* Similar to Map Reduce, Spark supports Key-Value pairs

* Fach element of a Pair RDD 1s a pair tuple

>>> rdd = sc.parallelize([(1, 2), (3, 4)])
RDD: [(1, 2), (3, 4)]

Some Key-Value Transformations

Key-Value Transformation

reduceByKey (func) return a new distributed dataset of (K|V) pairs where
the values for each key are aggregated using the
given reduce function func, which must be of type
(VV) 2V

sortByKey () return a new dataset (K,V) pairs sorted by keys in
ascending order

groupByKey () return a new dataset of (K lterable<V>) pairs

>>>
>>>

RDD:

>>>
>>>
RDD

Key-Value Transformations

rdd = sc.parallelize([(1,2), (3,4), (3,6)])
rdd.reduceByKey(lambda a, b: a + b)

[(1,2), (3,4), (3,6)] » [(1,2), (3,10)]

rdd2 = sc.parallelize([(1,'a"'), (2,'c'), (1,'b")])
rdd2.sortByKey()
c[(1,%a%), (2,'¢’), (1,'6")] -

[(1,7a"), (1,'b"), (2,'c")]

Key-Value Transformations

>>> rdd2 = sc.parallelize([(1,'a'), (2,'c’), (1,'b")])
>>> rdd2.groupByKey()
RDD: [(1,'a"), (1,'b"), (2,'c")] »

[(1,["a",'b"]), (2,['c"])]

Be careful using groupByKey () as
it can cause a lot of data movement
across the network and create large
lterables at workers

pySpark Closures

Worker

Spark automatically creates closures for: /t

L ral

L ral

functions

Worker

Driver

Worker

» Functions that run on RDDs at workers

» Any global variables used by those workers g

Worker

One closure per worker
» Sent for every task
» No communication between workers
» Changes to global variables at workers are not sent to driver

Consider These Use Cases

* [terative or single jobs with large global variables
» Sending large read-only lookup table to workers
» Sending large feature vector in a ML algorithm to workers

* Counting events that occur during job execution
» How many input lines were blank?
» How many input records were corrupt!

Consider These Use Cases

* [terative or single jobs with large global variables
» Sending large read-only lookup table to workers
» Sending large feature vector in a ML algorithm to workers

* Counting events that occur during job execution
» How many input lines were blank?
» How many input records were corrupt!

Problems:

* C(Closures are (re-)sent with every job

* |Inefficient to send large data to each worker
* Closures are one way: driver =» worker

(1) pySpark Shared Variables

Broadcast Variables
» Efficiently send large, read-only value to all workers
» Saved at workers for use in one or more Spark operations
» Like sending a large, read-only lookup table to all the nodes

+ +e+ Accumulators
» Aggregate values from workers back to driver
» Only driver can access value of accumulator
» For tasks, accumulators are write-only
» Use to count errors seen in RDD across workers

(é)) Broadcast Variables

Keep read-only variable cached on workers
» Ship to each worker only once instead of with each task

Example: efficiently give every worker a large dataset

Usually distributed using efficient broadcast algorithms

At the driver:
>>> broadcastVar = sc.broadcast([1, 2, 3])

At a worker (in code passed via a closure)
>>> broadcastVar.value

[1, 2, 3]

(1)

* Country code lookup for HAM radio call signs

Broadcast Variables Example

Lookup the Llocations of the call signs on the
RDD contactCounts. We Lload a List of call sign
prefixes to country code to support this Lookup

Expensive to send large table
(Re-)sent for every processed file

signPrefixes = loadCallSignTable()

def processSignCount(sign count, signPrefixes):
country = lookupCountry(sign _count[@], signPrefixes)
count = sign count[1]
return (country, count)

countryContactCounts = (contactCounts

.map(processSignCount)
.reduceByKey((lambda x, y: x+ y)))

From: http://shop.oreilly.com/product/06369200285 | 2.do

(1)

* Country code lookup for HAM radio call signs

Lookup the Llocations of the call signs on the
RDD contactCounts. We Lload a List of call sign

Broadcast Variables Example

prefixes to country code to support this Lookup | Efficiently sent once to workers

signPrefixes = sc.broadcast(loadCallSignTable())

def processSignCount(sign count, signPrefixes):

country = lookupCountry(sign _count[@], signPrefixes.value)
count = sign _count[1]
return (country, count)

countryContactCounts = (contactCounts

.map(processSignCount)
.reduceByKey((lambda x, y: x+ y)))

From: http://shop.oreilly.com/product/06369200285 | 2.do

R
Accumulators

+ o+ 4+
* Variables that can only be “added” to by associative op

* Used to efficiently implement parallel counters and sums

* Only driver can read an accumulator's value, not tasks

>>> accum = sc.accumulator(9)

>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> def f(x):

>>> global accum

>>> accum += X

>>> rdd.foreach(f)
>>> accum.value
Value: 10

Accumulators Example

+ o+ o+

* Counting empty lines

file = sc.textFile(inputFile)
Create Accumulator[Int] initialized to ©
blankLines = sc.accumulator(9)

def extractCallSigns(line):

global blankLines # Make the global variable accessible
if (line == ""):

blankLines += 1
return line.split(" ")

callSigns = file.flatMap(extractCallSigns)
print "Blank lines: %d" % blankLines.value

R
Accumulators

e Jasks at workers cannot access accumulator’s values
* Jasks see accumulators as write-only variables

e Accumulators can be used in actions or transformations:
» Actions: each task’s update to accumulator is applied only once

» Transformations: no guarantees (use only for debugging)

* Jypes: integers, double, long, float
» See lab for example of custom type

Summary

Driver program Spark automatically

Programmer ——--m==qe-=-p---p---
specifies number

pushes closures to
workers

of partitions

Worker Worker

code ' RDD code ' RDD

Worker

code ' RDD

Master parameter specifies number of workers

