Introduction to Big Data with Apache Spark

BerkeleyX

This Lecture

Programming Spark

Resilient Distributed Datasets (RDDs)

Creating an RDD

Spark Transformations and Actions

Spark Programming Model

Python Spark (pySpark)

- We are using the Python programming interface to Spark (<u>pySpark</u>)
- pySpark provides an easy-to-use programming abstraction and parallel runtime:
 - » "Here's an operation, run it on all of the data"
- RDDs are the key concept

Spark Driver and Workers

- A Spark program is two programs:
 - » A driver program and a workers program
- Worker programs run on cluster nodes or in local threads
- RDDs are distributed across workers

Spark Context

- A Spark program first creates a **SparkContext** object
 - » Tells Spark how and where to access a cluster
 - » pySpark shell and Databricks Cloud automatically create the sc variable
 - » <u>iPython</u> and programs must use a constructor to create a new **SparkContext**
- Use **SparkContext** to create RDDs

In the labs, we create the SparkContext for you

Spark Essentials: Master

 The master parameter for a SparkContext determines which type and size of cluster to use

Master Parameter	Description
local	run Spark locally with one worker thread (no parallelism)
local[K]	run Spark locally with K worker threads (ideally set to number of cores)
spark://HOST:PORT	connect to a Spark standalone cluster; PORT depends on config (7077 by default)
mesos://HOST:PORT	connect to a Mesos cluster; PORT depends on config (5050 by default)

In the labs, we set the master parameter for you

Resilient Distributed Datasets

- The primary abstraction in Spark
 - » Immutable once constructed
 - » Track lineage information to efficiently recompute lost data
 - » Enable operations on collection of elements in parallel
- You construct RDDs
 - » by parallelizing existing Python collections (lists)
 - » by transforming an existing RDDs
 - » from files in HDFS or any other storage system

RDDs

Programmer specifies number of partitions for an RDD

(Default value used if unspecified)

RDDs

- Two types of operations: transformations and actions
- Transformations are lazy (not computed immediately)
- Transformed RDD is executed when action runs on it
- Persist (cache) RDDs in memory or disk

Working with RDDs

- Create an RDD from a data source:
- <
- Apply transformations to an RDD: map filter
- Apply actions to an RDD: collect count

Spark References

- http://spark.apache.org/docs/latest/programming-guide.html
- http://spark.apache.org/docs/latest/api/python/index.html

Creating an RDD

Create RDDs from Python collections (lists)

```
No computation occurs with sc.parallelize()
>>> data = [1, 2, 3, 4, 5]
>>> data
[1, 2, 3, 4, 5]

>>> rDD = sc.parallelize(data, 4)
>>> rDD
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:229
```

Creating RDDs

From HDFS, text files, <u>Hypertable</u>, <u>Amazon S3</u>, <u>Apache Hbase</u>,
 SequenceFiles, any other Hadoop <u>InputFormat</u>, and directory or glob wildcard: /data/201404*

```
>>> distFile = sc.textFile("README.md", 4)
>>> distFile
MappedRDD[2] at textFile at
   NativeMethodAccessorImpl.java:-2
```

Creating an RDD from a File

- RDD distributed in 4 partitions
- Elements are lines of input
- Lazy evaluation means
 no execution happens now

Spark Transformations

- Create new datasets from an existing one
- Use lazy evaluation: results not computed right away instead Spark remembers set of transformations applied to base dataset
 - » Spark optimizes the required calculations
 - » Spark recovers from failures and slow workers
- Think of this as a recipe for creating result

Some Transformations

Transformation	Description
map(func)	return a new distributed dataset formed by passing each element of the source through a function func
filter(func)	return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true
<pre>distinct([numTasks]))</pre>	return a new dataset that contains the distinct elements of the source dataset
<pre>flatMap(func)</pre>	similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item)

Review: Python lambda Functions

- Small anonymous functions (not bound to a name)
 lambda a, b: a + b
 - » returns the sum of its two arguments
- Can use lambda functions wherever function objects are required
- Restricted to a single expression

Transformations

```
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> rdd.map(lambda x: x * 2)
RDD: [1, 2, 3, 4] → [2, 4, 6, 8]

>>> rdd.filter(lambda x: x % 2 == 0)
RDD: [1, 2, 3, 4] → [2, 4]

>>> rdd2 = sc.parallelize([1, 4, 2, 2, 3])
>>> rdd2.distinct()
RDD: [1, 4, 2, 2, 3] → [1, 4, 2, 3]
```

Transformations

```
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.Map(lambda x: [x, x+5])
RDD: [1, 2, 3] → [[1, 6], [2, 7], [3, 8]]
>>> rdd.flatMap(lambda x: [x, x+5])
RDD: [1, 2, 3] → [1, 6, 2, 7, 3, 8]
```

Function literals (green) are closures automatically passed to workers

Transforming an RDD

lines = sc.textFile("...", 4)

comments = lines.filter(isComment)

Lazy evaluation means nothing executes — Spark saves recipe for transforming source

Spark Actions

- Cause Spark to execute recipe to transform source
- Mechanism for getting results out of Spark

Some Actions

Action	Description
reduce(func)	aggregate dataset's elements using function func. func takes two arguments and returns one, and is commutative and associative so that it can be computed correctly in parallel
take(n)	return an array with the first <i>n</i> elements
<pre>collect()</pre>	return all the elements as an array WARNING: make sure will fit in driver program
<pre>takeOrdered(n, key=func)</pre>	return n elements ordered in ascending order or as specified by the optional key function

Getting Data Out of RDDs

```
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.reduce(lambda a, b: a * b)
Value: 6

>>> rdd.take(2)
Value: [1,2] # as list

>>> rdd.collect()
Value: [1,2,3] # as list
```

Getting Data Out of RDDs

```
>>> rdd = sc.parallelize([5,3,1,2])
>>> rdd.takeOrdered(3, lambda s: -1 * s)
Value: [5,3,2] # as list
```

Spark Programming Model

lines = sc.textFile("...", 4)

print lines.count()

count() causes Spark to:

- read data
- sum within partitions
- combine sums in driver

Spark Programming Model

```
lines = sc.textFile("...", 4)
comments = lines.filter(isComment)
print lines.count(), comments.count()
```


Caching RDDs

lines = sc.textFile("...", 4)
Lines.cache() # save, don't recompute!
comments = lines.filter(isComment)
print lines.count(),comments.count()

Spark Program Lifecycle

- I. Create RDDs from external data or <u>parallelize</u> a collection in your driver program
- 2. Lazily <u>transform</u> them into new RDDs
- 3. cache() some RDDs for reuse
- 4. Perform <u>actions</u> to execute parallel computation and produce results

Spark Key-Value RDDs

- Similar to Map Reduce, Spark supports Key-Value pairs
- Each element of a Pair RDD is a pair tuple

```
>>> rdd = sc.parallelize([(1, 2), (3, 4)])
RDD: [(1, 2), (3, 4)]
```

Some Key-Value Transformations

Key-Value Transformation	Description
reduceByKey(<i>func</i>)	return a new distributed dataset of (K,V) pairs where the values for each key are aggregated using the given reduce function <i>func</i> , which must be of type $(V,V) \rightarrow V$
sortByKey()	return a new dataset (K,V) pairs sorted by keys in ascending order
<pre>groupByKey()</pre>	return a new dataset of (K, Iterable <v>) pairs</v>

Key-Value Transformations

Key-Value Transformations

Be careful using **groupByKey()** as it can cause a lot of data movement across the network and create large lterables at workers

pySpark Closures

Spark automatically creates closures for:

Driver functions globals Worker

kers

Worker

Worker

- » Functions that run on RDDs at workers
- » Any global variables used by those workers
- One closure per worker
 - » Sent for every task
 - » No communication between workers
 - » Changes to global variables at workers are not sent to driver

Consider These Use Cases

- Iterative or single jobs with large global variables
 - » Sending large read-only lookup table to workers
 - » Sending large feature vector in a ML algorithm to workers
- Counting events that occur during job execution
 - » How many input lines were blank?
 - » How many input records were corrupt?

Consider These Use Cases

- Iterative or single jobs with large global variables
 - » Sending large read-only lookup table to workers
 - » Sending large feature vector in a ML algorithm to workers
- Counting events that occur during job execution
 - » How many input lines were blank?
 - » How many input records were corrupt?

Problems:

- Closures are (re-)sent with every job
- Inefficient to send large data to each worker
- Closures are one way: driver → worker

- <u>Broadcast Variables</u>» Efficiently send large, *read-only* value to all workers
- » Saved at workers for use in one or more Spark operations
- » Like sending a large, read-only lookup table to all the nodes

+• + Accumulators

- » Aggregate values from workers back to driver
- » Only driver can access value of accumulator
- » For tasks, accumulators are write-only
- » Use to count errors seen in RDD across workers

Broadcast Variables

- Keep read-only variable cached on workers
 - » Ship to each worker only once instead of with each task
- Example: efficiently give every worker a large dataset
- Usually distributed using efficient broadcast algorithms

```
At the driver:
>>> broadcastVar = sc.broadcast([1, 2, 3])
At a worker (in code passed via a closure)
>>> broadcastVar.value
[1, 2, 3]
```

Broadcast Variables Example

.reduceByKey((lambda x, y: x+ y)))

Country code lookup for HAM radio call signs

```
# Lookup the locations of the call signs on the
# RDD contactCounts. We load a list of call sign
# prefixes to country code to support this lookup
signPrefixes = loadCallSignTable()

def processSignCount(sign_count, signPrefixes):
    country = lookupCountry(sign_count[0], signPrefixes)
    count = sign_count[1]
    return (country, count)

countryContactCounts = (contactCounts
    .map(processSignCount)
```

From: http://shop.oreilly.com/product/0636920028512.do

Broadcast Variables Example

Country code lookup for HAM radio call signs

From: http://shop.oreilly.com/product/0636920028512.do

Accumulators

- Variables that can only be "added" to by associative op
- Used to efficiently implement parallel counters and sums
- Only driver can read an accumulator's value, not tasks

```
>>> accum = sc.accumulator(0)
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> def f(x):
>>> global accum
>>> accum += x

>>> rdd.foreach(f)
>>> accum.value
Value: 10
```


Accumulators Example

Counting empty lines

```
file = sc.textFile(inputFile)
# Create Accumulator[Int] initialized to 0
blankLines = sc.accumulator(0)

def extractCallSigns(line):
    global blankLines # Make the global variable accessible
    if (line == ""):
        blankLines += 1
    return line.split(" ")

callSigns = file.flatMap(extractCallSigns)
print "Blank lines: %d" % blankLines.value
```


Accumulators

- Tasks at workers cannot access accumulator's values
- Tasks see accumulators as write-only variables
- Accumulators can be used in actions or transformations:
 - » Actions: each task's update to accumulator is applied only once
 - » Transformations: *no guarantees* (use only for debugging)
- Types: integers, double, long, float
 - » See lab for example of custom type

Summary

Spark automatically pushes closures to workers

Master parameter specifies number of workers